3.6.37 \(\int \frac {c+d x+e x^2+f x^3}{x^4 \sqrt {a+b x^4}} \, dx\) [537]

3.6.37.1 Optimal result
3.6.37.2 Mathematica [C] (verified)
3.6.37.3 Rubi [A] (verified)
3.6.37.4 Maple [C] (verified)
3.6.37.5 Fricas [A] (verification not implemented)
3.6.37.6 Sympy [C] (verification not implemented)
3.6.37.7 Maxima [F]
3.6.37.8 Giac [F]
3.6.37.9 Mupad [F(-1)]

3.6.37.1 Optimal result

Integrand size = 30, antiderivative size = 323 \[ \int \frac {c+d x+e x^2+f x^3}{x^4 \sqrt {a+b x^4}} \, dx=-\frac {c \sqrt {a+b x^4}}{3 a x^3}-\frac {d \sqrt {a+b x^4}}{2 a x^2}-\frac {e \sqrt {a+b x^4}}{a x}+\frac {\sqrt {b} e x \sqrt {a+b x^4}}{a \left (\sqrt {a}+\sqrt {b} x^2\right )}-\frac {f \text {arctanh}\left (\frac {\sqrt {a+b x^4}}{\sqrt {a}}\right )}{2 \sqrt {a}}-\frac {\sqrt [4]{b} e \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{a^{3/4} \sqrt {a+b x^4}}-\frac {\sqrt [4]{b} \left (\sqrt {b} c-3 \sqrt {a} e\right ) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{6 a^{5/4} \sqrt {a+b x^4}} \]

output
-1/2*f*arctanh((b*x^4+a)^(1/2)/a^(1/2))/a^(1/2)-1/3*c*(b*x^4+a)^(1/2)/a/x^ 
3-1/2*d*(b*x^4+a)^(1/2)/a/x^2-e*(b*x^4+a)^(1/2)/a/x+e*x*b^(1/2)*(b*x^4+a)^ 
(1/2)/a/(a^(1/2)+x^2*b^(1/2))-b^(1/4)*e*(cos(2*arctan(b^(1/4)*x/a^(1/4)))^ 
2)^(1/2)/cos(2*arctan(b^(1/4)*x/a^(1/4)))*EllipticE(sin(2*arctan(b^(1/4)*x 
/a^(1/4))),1/2*2^(1/2))*(a^(1/2)+x^2*b^(1/2))*((b*x^4+a)/(a^(1/2)+x^2*b^(1 
/2))^2)^(1/2)/a^(3/4)/(b*x^4+a)^(1/2)-1/6*b^(1/4)*(cos(2*arctan(b^(1/4)*x/ 
a^(1/4)))^2)^(1/2)/cos(2*arctan(b^(1/4)*x/a^(1/4)))*EllipticF(sin(2*arctan 
(b^(1/4)*x/a^(1/4))),1/2*2^(1/2))*(-3*e*a^(1/2)+c*b^(1/2))*(a^(1/2)+x^2*b^ 
(1/2))*((b*x^4+a)/(a^(1/2)+x^2*b^(1/2))^2)^(1/2)/a^(5/4)/(b*x^4+a)^(1/2)
 
3.6.37.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.17 (sec) , antiderivative size = 149, normalized size of antiderivative = 0.46 \[ \int \frac {c+d x+e x^2+f x^3}{x^4 \sqrt {a+b x^4}} \, dx=\frac {-2 a c \sqrt {1+\frac {b x^4}{a}} \operatorname {Hypergeometric2F1}\left (-\frac {3}{4},\frac {1}{2},\frac {1}{4},-\frac {b x^4}{a}\right )-3 x \left (a d+b d x^4+\sqrt {a} f x^2 \sqrt {a+b x^4} \text {arctanh}\left (\frac {\sqrt {a+b x^4}}{\sqrt {a}}\right )+2 a e x \sqrt {1+\frac {b x^4}{a}} \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},-\frac {b x^4}{a}\right )\right )}{6 a x^3 \sqrt {a+b x^4}} \]

input
Integrate[(c + d*x + e*x^2 + f*x^3)/(x^4*Sqrt[a + b*x^4]),x]
 
output
(-2*a*c*Sqrt[1 + (b*x^4)/a]*Hypergeometric2F1[-3/4, 1/2, 1/4, -((b*x^4)/a) 
] - 3*x*(a*d + b*d*x^4 + Sqrt[a]*f*x^2*Sqrt[a + b*x^4]*ArcTanh[Sqrt[a + b* 
x^4]/Sqrt[a]] + 2*a*e*x*Sqrt[1 + (b*x^4)/a]*Hypergeometric2F1[-1/4, 1/2, 3 
/4, -((b*x^4)/a)]))/(6*a*x^3*Sqrt[a + b*x^4])
 
3.6.37.3 Rubi [A] (verified)

Time = 0.52 (sec) , antiderivative size = 323, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {2372, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {c+d x+e x^2+f x^3}{x^4 \sqrt {a+b x^4}} \, dx\)

\(\Big \downarrow \) 2372

\(\displaystyle \int \left (\frac {c+e x^2}{x^4 \sqrt {a+b x^4}}+\frac {d+f x^2}{x^3 \sqrt {a+b x^4}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {\sqrt [4]{b} \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \left (\sqrt {b} c-3 \sqrt {a} e\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{6 a^{5/4} \sqrt {a+b x^4}}-\frac {\sqrt [4]{b} e \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{a^{3/4} \sqrt {a+b x^4}}-\frac {f \text {arctanh}\left (\frac {\sqrt {a+b x^4}}{\sqrt {a}}\right )}{2 \sqrt {a}}-\frac {c \sqrt {a+b x^4}}{3 a x^3}-\frac {d \sqrt {a+b x^4}}{2 a x^2}-\frac {e \sqrt {a+b x^4}}{a x}+\frac {\sqrt {b} e x \sqrt {a+b x^4}}{a \left (\sqrt {a}+\sqrt {b} x^2\right )}\)

input
Int[(c + d*x + e*x^2 + f*x^3)/(x^4*Sqrt[a + b*x^4]),x]
 
output
-1/3*(c*Sqrt[a + b*x^4])/(a*x^3) - (d*Sqrt[a + b*x^4])/(2*a*x^2) - (e*Sqrt 
[a + b*x^4])/(a*x) + (Sqrt[b]*e*x*Sqrt[a + b*x^4])/(a*(Sqrt[a] + Sqrt[b]*x 
^2)) - (f*ArcTanh[Sqrt[a + b*x^4]/Sqrt[a]])/(2*Sqrt[a]) - (b^(1/4)*e*(Sqrt 
[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticE[2 
*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(a^(3/4)*Sqrt[a + b*x^4]) - (b^(1/4)*( 
Sqrt[b]*c - 3*Sqrt[a]*e)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] 
 + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(6*a^(5/ 
4)*Sqrt[a + b*x^4])
 

3.6.37.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2372
Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Mo 
dule[{q = Expon[Pq, x], j, k}, Int[Sum[((c*x)^(m + j)/c^j)*Sum[Coeff[Pq, x, 
 j + k*(n/2)]*x^(k*(n/2)), {k, 0, 2*((q - j)/n) + 1}]*(a + b*x^n)^p, {j, 0, 
 n/2 - 1}], x]] /; FreeQ[{a, b, c, m, p}, x] && PolyQ[Pq, x] && IGtQ[n/2, 0 
] &&  !PolyQ[Pq, x^(n/2)]
 
3.6.37.4 Maple [C] (verified)

Result contains complex when optimal does not.

Time = 2.05 (sec) , antiderivative size = 237, normalized size of antiderivative = 0.73

method result size
risch \(-\frac {\sqrt {b \,x^{4}+a}\, \left (6 e \,x^{2}+3 d x +2 c \right )}{6 a \,x^{3}}+\frac {-\frac {b c \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}+\frac {3 i \sqrt {b}\, e \sqrt {a}\, \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-E\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}-\frac {3 \sqrt {a}\, f \ln \left (\frac {2 a +2 \sqrt {a}\, \sqrt {b \,x^{4}+a}}{x^{2}}\right )}{2}}{3 a}\) \(237\)
elliptic \(-\frac {c \sqrt {b \,x^{4}+a}}{3 a \,x^{3}}-\frac {d \sqrt {b \,x^{4}+a}}{2 a \,x^{2}}-\frac {e \sqrt {b \,x^{4}+a}}{a x}-\frac {c b \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{3 a \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}+\frac {i \sqrt {b}\, e \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-E\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{\sqrt {a}\, \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}-\frac {f \,\operatorname {arctanh}\left (\frac {\sqrt {a}}{\sqrt {b \,x^{4}+a}}\right )}{2 \sqrt {a}}\) \(248\)
default \(-\frac {f \ln \left (\frac {2 a +2 \sqrt {a}\, \sqrt {b \,x^{4}+a}}{x^{2}}\right )}{2 \sqrt {a}}+c \left (-\frac {\sqrt {b \,x^{4}+a}}{3 a \,x^{3}}-\frac {b \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{3 a \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}\right )+e \left (-\frac {\sqrt {b \,x^{4}+a}}{a x}+\frac {i \sqrt {b}\, \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-E\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{\sqrt {a}\, \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}\right )-\frac {d \sqrt {b \,x^{4}+a}}{2 a \,x^{2}}\) \(259\)

input
int((f*x^3+e*x^2+d*x+c)/x^4/(b*x^4+a)^(1/2),x,method=_RETURNVERBOSE)
 
output
-1/6*(b*x^4+a)^(1/2)*(6*e*x^2+3*d*x+2*c)/a/x^3+1/3/a*(-b*c/(I/a^(1/2)*b^(1 
/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2) 
/(b*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I)+3*I*b^(1/2)*e*a^ 
(1/2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/ 
2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*(EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/ 
2),I)-EllipticE(x*(I/a^(1/2)*b^(1/2))^(1/2),I))-3/2*a^(1/2)*f*ln((2*a+2*a^ 
(1/2)*(b*x^4+a)^(1/2))/x^2))
 
3.6.37.5 Fricas [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 136, normalized size of antiderivative = 0.42 \[ \int \frac {c+d x+e x^2+f x^3}{x^4 \sqrt {a+b x^4}} \, dx=-\frac {12 \, \sqrt {a} e x^{3} \left (-\frac {b}{a}\right )^{\frac {3}{4}} E(\arcsin \left (x \left (-\frac {b}{a}\right )^{\frac {1}{4}}\right )\,|\,-1) - 4 \, \sqrt {a} {\left (c + 3 \, e\right )} x^{3} \left (-\frac {b}{a}\right )^{\frac {3}{4}} F(\arcsin \left (x \left (-\frac {b}{a}\right )^{\frac {1}{4}}\right )\,|\,-1) - 3 \, \sqrt {a} f x^{3} \log \left (-\frac {b x^{4} - 2 \, \sqrt {b x^{4} + a} \sqrt {a} + 2 \, a}{x^{4}}\right ) + 2 \, \sqrt {b x^{4} + a} {\left (6 \, e x^{2} + 3 \, d x + 2 \, c\right )}}{12 \, a x^{3}} \]

input
integrate((f*x^3+e*x^2+d*x+c)/x^4/(b*x^4+a)^(1/2),x, algorithm="fricas")
 
output
-1/12*(12*sqrt(a)*e*x^3*(-b/a)^(3/4)*elliptic_e(arcsin(x*(-b/a)^(1/4)), -1 
) - 4*sqrt(a)*(c + 3*e)*x^3*(-b/a)^(3/4)*elliptic_f(arcsin(x*(-b/a)^(1/4)) 
, -1) - 3*sqrt(a)*f*x^3*log(-(b*x^4 - 2*sqrt(b*x^4 + a)*sqrt(a) + 2*a)/x^4 
) + 2*sqrt(b*x^4 + a)*(6*e*x^2 + 3*d*x + 2*c))/(a*x^3)
 
3.6.37.6 Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 1.88 (sec) , antiderivative size = 131, normalized size of antiderivative = 0.41 \[ \int \frac {c+d x+e x^2+f x^3}{x^4 \sqrt {a+b x^4}} \, dx=- \frac {\sqrt {b} d \sqrt {\frac {a}{b x^{4}} + 1}}{2 a} + \frac {c \Gamma \left (- \frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {3}{4}, \frac {1}{2} \\ \frac {1}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt {a} x^{3} \Gamma \left (\frac {1}{4}\right )} + \frac {e \Gamma \left (- \frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{4}, \frac {1}{2} \\ \frac {3}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt {a} x \Gamma \left (\frac {3}{4}\right )} - \frac {f \operatorname {asinh}{\left (\frac {\sqrt {a}}{\sqrt {b} x^{2}} \right )}}{2 \sqrt {a}} \]

input
integrate((f*x**3+e*x**2+d*x+c)/x**4/(b*x**4+a)**(1/2),x)
 
output
-sqrt(b)*d*sqrt(a/(b*x**4) + 1)/(2*a) + c*gamma(-3/4)*hyper((-3/4, 1/2), ( 
1/4,), b*x**4*exp_polar(I*pi)/a)/(4*sqrt(a)*x**3*gamma(1/4)) + e*gamma(-1/ 
4)*hyper((-1/4, 1/2), (3/4,), b*x**4*exp_polar(I*pi)/a)/(4*sqrt(a)*x*gamma 
(3/4)) - f*asinh(sqrt(a)/(sqrt(b)*x**2))/(2*sqrt(a))
 
3.6.37.7 Maxima [F]

\[ \int \frac {c+d x+e x^2+f x^3}{x^4 \sqrt {a+b x^4}} \, dx=\int { \frac {f x^{3} + e x^{2} + d x + c}{\sqrt {b x^{4} + a} x^{4}} \,d x } \]

input
integrate((f*x^3+e*x^2+d*x+c)/x^4/(b*x^4+a)^(1/2),x, algorithm="maxima")
 
output
integrate((f*x^3 + e*x^2 + d*x + c)/(sqrt(b*x^4 + a)*x^4), x)
 
3.6.37.8 Giac [F]

\[ \int \frac {c+d x+e x^2+f x^3}{x^4 \sqrt {a+b x^4}} \, dx=\int { \frac {f x^{3} + e x^{2} + d x + c}{\sqrt {b x^{4} + a} x^{4}} \,d x } \]

input
integrate((f*x^3+e*x^2+d*x+c)/x^4/(b*x^4+a)^(1/2),x, algorithm="giac")
 
output
integrate((f*x^3 + e*x^2 + d*x + c)/(sqrt(b*x^4 + a)*x^4), x)
 
3.6.37.9 Mupad [F(-1)]

Timed out. \[ \int \frac {c+d x+e x^2+f x^3}{x^4 \sqrt {a+b x^4}} \, dx=\int \frac {f\,x^3+e\,x^2+d\,x+c}{x^4\,\sqrt {b\,x^4+a}} \,d x \]

input
int((c + d*x + e*x^2 + f*x^3)/(x^4*(a + b*x^4)^(1/2)),x)
 
output
int((c + d*x + e*x^2 + f*x^3)/(x^4*(a + b*x^4)^(1/2)), x)